i% electronics

Article

Evaluating the X2000: A Novel Integrated Platform for Rapid
ADAS Development

Michael Giuliani ! and George Pappas *

Academic Editor: Firstname Last-

name

Received: date
Revised: date
Accepted: date
Published: date

Citation: To be added by editorial

staff during production.

Copyright: © 2025 by the authors.
Submitted for possible open access
publication under the terms and
conditions of the Creative Commons
Attribution (CC BY) license
(https://creativecommons.org/li-

censes/by/4.0/).

1 Department of Electrical & Computer Engineering, Lawrence Technological University, Southfield, MI
48075, USA; mgiuliani@ltu.edu
* Correspondence: gpappas@ltu.edu

Abstract

In this work, we present the design and evaluation of the X2000, a new development kit
created to simplify and accelerate research for advanced driver assistance systems
(ADAS). The X2000 is a complete ADAS development kit for the Ford Mach-E. It includes
a forward-facing vehicle-mounted camera, vehicle mounted Al computer, controller area
network flexible data-rate (CAN-FD) and 12V power connections, and a CAN-FD inter-
face to the vehicle’s forward radar. Central to the kit is a novel ADAS software architec-
ture designed for readability and extensibility. Included in the design are software mod-
ules for: (1) Camera and radar interfacing. (2) Image processing. (3) Al model inference.
(4) Data logging. (5) Steering and velocity planning. (6) Low-level vehicle controls for
steering, acceleration, and braking. (7) Lane centering visualization to the car’s 17-inch
touchscreen. To build on a proven system, the X2000 integrates the Al model, planner,
low-level controls, and radar interfacing software from Openpilot. We build on the excel-
lent work of the Openpilot team while creating a highly simplified system. Openpilot fea-
tures 17 software processes and 77 inter-process messages while the X2000 uses 6 pro-
cesses and 7 inter-process messages.

Keywords: Artificial intelligence; computer vision; ADAS; rapid development; real-time
computing

1. Introduction

Outfitting a vehicle for ADAS development is a time and resource intensive process.
It requires installing a drive-by-wire control system, integrating and calibrating cameras
and sensors, developing the ADAS software, and validating the complete system for safe
road testing. There are existing solutions that seek to address these challenges. The X2000
leverages aspects of these existing systems while providing a novel software architecture
for faster ADAS development with the goal of lowering the barrier to entry for the crea-
tion of new ADAS research and development programs.

Existing solutions include 3 primary options:

e Nvidia DRIVE developer kit;
e Baidu Apollo;
¢ Comma.ai Comma Four running Openpilot.

Nvidia DRIVE includes state-of-the-art ADAS hardware along with advanced ADAS de-
velopment software. It is accessible solely to approved developers of automated driving

Electronics 2025, 14, x

https://doi.org/10.3390/xxxxx

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26

27

28
29
30
31
32
33
34
35

36
37
38

39
40



Electronics 2025, 14, x FOR PEER REVIEW 2 of 16

software [1]. DRIVE also provides a list of supported sensors, yet these require test vehicle
integration and calibration [2]. Finally, DRIVE is restricted to Nvidia’s C-based code and
toolchains [3]. C requires more code for a given task than Python, which can limit rapid
progress [4].

The Baidu Apollo features an extensive and highly capable open source software sys-
tem [5]. They also have their own hardware platform and support a variety of added sen-
sors [6]. While Apollo is accessible and capable for developers, its open source software is
written in C++ [5]. C++ also requires more code for a given task than Python [4]. Longer
code combined with their deep network of sensors and computers can increase develop-
ment time [4,5].

Openpilot from Comma.ai offers an open source, Python-based software system with
built-in drive-by-wire, camera, and radar interfacing [7]. For a given task, Python has
shown itself to be a more efficient programming language by lines of code than other
languages, which means software using it can be developed faster [4]. Openpilot’s com-
puter vision inference model and control system has been validated on over 300 million
miles of driving, which gives developers a strong foundation for building ADAS software
[7]. This research directly observes a challenge for developers that is presented by
Openpilot. Openpilot has a complex software architecture that includes 17 different pro-
cesses with 77 different messages communicated between them [8,9]. This architecture
makes extensibility of the software more difficult due to the complex interactions through-
out the system. Openpilot is also only plug-and-play with the Comma Four as a hardware
platform, which is a proprietary device from Comma.ai [10].

The X2000 combines the same state-of-the-art system-on-chip as the Nvidia DRIVE
with the capabilities and development potential of Openpilot while optimizing it for rapid
development and extensibility. The X2000 leverages its Al inference model, steering and
velocity planning, and low-level vehicle control methods. Openpilot has 17 separate pro-
cesses while the X2000’s architecture uses only 6 [8]. The architecture of Openpilot is
shown in Figure 1 [11]. Reducing the number of processes aims to make the code more
comprehensible for new developers and more extensible by reducing the complexity of
the architecture.
ierracke®

®

modelv2

b carState

radard l All Messages
{controk)

modelV2 i = y liveLongitudinalMpc Inggerd
plannerd
(controls)

carParams, sandcan, carControl, carEvents

logcatd longitudinalPlan 1 B

liveCalibration
radarState
controlsState

carState

1" controlsd

deviceState
liveLocationKalman
o8 liveParameters
ubloxGnss

ubloxd ® carstate

(lcationd)
carState

modelV2

locationd paramsd
(locationd) (locationd)

liveLocationKalman

ubloxRaw

uoneiqieganl

aieIge01Aep
[euIBgUONRI0TSdB

liveCalibration

- sensord

m carstate calibrationd
boardd —
can

liveCalib
driverCameraState eCalibration

roadCameraState modeld modelv2
(oot P controlsState
camerad “visionipe > dmonitoringmodeld T
wideRoadCameraState | (modeld)

thumbnail .

Figure 1. The software architecture of Openpilot.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71

72



Electronics 2025, 14, x FOR PEER REVIEW 3 of 16

The X2000’s architecture includes the diffusion transformer-based computer vision 73
inference model from Openpilot for predicting road segmentation, object detection, future 74
trajectory, and vehicle actions [12]. It runs on an Nvidia Jetson AGX Orin using Jetpack 75
6.2 instead of Comma.ai’s proprietary hardware. Dedicated software modules facilitate 76
camera and radar interfacing, inference by the Al model, steering and velocity planning, 77
drive-by-wire vehicle control, data logging, and user interface display on the vehicle’s 78
center screen. It is integrated and pre-calibrated to be used immediately with the Ford 79
Mach-E. 80

Its Jetson Al platform provides standardized connections for power, CAN-FD, and 81
automotive-grade GMSL2 cameras. The CAN-FD interface uses a modular software and 82
hardware design to simplify switching between test vehicles. A pre-calibrated road facing 83
GMSL2 camera is included to enable the computer vision tasks within the reference soft- 84
ware. While the Comma Four uses two separate cameras to capture images for inference, 85
the software design in this research projects the images from a single camera into the two 86
views needed for the computer vision model. This single camera method facilitates a sim- 87
pler install process and cheaper hardware cost. 88

This paper first discusses the technology and methodology behind the design of the 89
X2000. Next, test results are presented that aim to provide an understanding of how well 90
the X2000 can process data and handle computational loads while performing real-time 91
ADAS testing. Finally, the results of that testing are analyzed, conclusions are drawn from 92

them, and future research possibilities are discussed. 93
2. Materials and Methods 94
2.1. Software Reference Design 95

The X2000’s ADAS software reference design focuses on simplified, understandable 96
code. It is essential that the structure of the code and what each process does can be inter- 97
preted and modified easily by developers. Other development kits such as the Nvidia 98
DRIVE and Baidu Apollo use C or C++ which require more code compared to Pythonto 99
perform the same tasks [3-5]. Openpilot uses Python but is designed with a network of 17 100
different processes with 77 inter-process messages as seen in Figure 1 [8,9,11]. The X2000 101
achieves its goal of simplicity and extensibility by restructuring Openpilot’s Python 102
source code into just 6 main processes and three shared memory partitions with 7 inter- 103
process messages. 104

Openpilot is an open source Level 2 ADAS system from Comma.ai that runs on their 105
proprietary hardware device called the Comma Four [7]. Openpilot’s software is available 106
to the public under the MIT license [13]. This license allows Openpilot’s software to be 107
used and developed for independent research projects such as the X2000 [14]. Openpilot 108
0.10.1 is the Openpilot version used for this research [7]. The deep learning model behind 109
Openpilot, and by extension the X2000, has been trained and validated across over 300 110
million miles of driving, 56% of which were driven fully by Openpilot’s software under 111
driver supervision [7]. The X2000 having a well-established model to build off of is essen- 112
tial for confidence in its performance and having a strong foundation to develop from. 113

Each major process and data structure of the X2000’s software is written using the 114
class data structure. The overall structure and data flow of the software is shown in Figure 115

2. The main processes include: 116
e Preparing video frames for inference at 20 Hz; 117
e Performing computer vision inference at 20 Hz; 118

e Calculating vehicle control plans from inference outputs, vehicle state data, and radar 119
using a model predictive control (MPC) algorithm at 20 Hz; 120
e  Processing CAN-FD inputs and outputs to execute control plans at 100 Hz; 121



Electronics 2025, 14, x FOR PEER REVIEW 4 of 16

e FPormatting live camera, inference, and control data to be displayed on the vehicle’s 122

center console screen at 20 Hz; 123
e Logging video and CAN-FD data while driving at 20 Hz and 100 Hz respectively. 124
Camera Radar
Interface
"""""" Radar
Video 20Hz
20Hz
. Video Formatted Inference Video
UGS Preprocessing Video Inference Predictions—»{ AETREL —2& Telemetry- GUI
Data Logger e 20Hz Loop 20Hz Loop 20Hz
P
]
MPC Plan
Key: 20Hz
y

« System Inputs/Outputs

— Vehicle CAN
* System Frocesses Vehicle CAN |- AN Control Loop | CAN

100Hz 100Hz

.vatatoggng | ———— | |77 .
Data Logger

Figure 2. Flow of data in the main processes of the X2000’s software. 126

125

The video preprocessing, inference, and user interface processes communicate cam- 127
era data through shared memory. Shared system memory is established by allocating the 128
amount of memory the shared data needs to a specific memory address range in RAM. 129
The shared_memory module of the multiprocessing Python library is used to define the 130
shared memory partitions with globally known unique identifiers [15]. At startup, each 131
process finds the location of the data it needs in memory using the global identifier. Each 132
partition has its own set of methods defined for initialization, reading, and writing. Shared 133
memory allows each process to run independently. They can be stopped and started as 134
needed. This makes the system safer and faster to develop. If a process has stopped or 135
failed, it can be restarted without the rest of the system also failing or needing to restart. 136

In addition, the control and inference processes share data via the message passing 137
software module of Openpilot 0.10.1 named cereal. The control process sends vehicle state 138
and vehicle control predictions as a message, and the inference process sends the model 139
predictions and planner outputs as a message to the control process. The message passing 140
mechanism ensures only the latest data is processed by each. They run at different rates 141
as the inference process uses a trained model that features images spaced 50 ms apart. The 142
control process features control decisions that need to be communicated at the vehicle’s 143
predetermined frequency for each CAN-FD message, as defined in the manufacturer’'s 144
DBC file. 145

The overall flow of data starts with the camera interface reading video from the 146
GMSL2 deserializer. The video preprocessing loop uses the original wide angle image 147
from the camera to generate a second narrow angle image. It does this by cropping, up- 148
sampling, and applying a lens distortion projection matrix to the original image to mimic 149
a narrow angle lens. The camera produces 1,920 by 1,200 pixel Blue-Green-Red-Alpha 150
(BGRA) images, which are converted to two images following reprojection. These are then 151
converted to two 512 by 256 YUV images as required by the Openpilot inference model. 152
For display to the vehicle’s screen the original BGRA image is converted to RGB. The 153
model’s 3D predictions are overlaid onto the RGB image based on the camera’s intrinsic 154
and extrinsic characteristics. The formatted video is passed to the inference loop through 155
shared memory. 156

The inference loop runs computer vision inference on the wide and narrow YUV 157
images. The model, developed originally for Openpilot, uses two transformer networks 158



Electronics 2025, 14, x FOR PEER REVIEW 5 of 16

[12]. The first network’s architecture is based on FastViT [16]. It predicts features about 159
the driving scene including lane lines, road edges, lead car positions, and the future tra- 160
jectory of the test vehicle [12]. The second network is a diffusion transformer that takes 161
the last five seconds of outputs from the first transformer as an input [12]. It predicts the 162
final output of the model which includes velocity targets and the desired curvature for 163
the test vehicle to follow. An image depicting the steering and velocity predictions from 164
the X2000’s GUI is shown in Figure 3. The predictions are sent to the planner process so 165
the control and MPC algorithm policies can be applied to them. 166

167

Figure 3. An image from the X2000’s GUI depicting the forward camera’s view with an overlay of 168
the steering plans (green) and velocity plans (red). 169

The planner process splits the control problem into longitudinal and lateral pipelines, 170
each using algorithmic strategies to maintain stable control of the vehicle. For longitudinal 171
control, the system implements a Proportional-Integral-Derivative (PID) algorithm cou- 172
pled with a feedforward component. This controller minimizes the error between the tar- 173
get acceleration from the acceleration plan and the vehicle's current acceleration The pro- 174
portional term addresses immediate error, the integral term eliminates steady-state offset 175
by accumulating error over time, and the derivative term provides damping to prevent 176
overshoot, while the feedforward term uses the raw target acceleration to provide a base- 177
line command that improves system responsiveness. When the driver hits the throttle or 178
brakes, the system stops sending longitudinal control commands. 179

The lateral control pipeline utilizes a Feedforward Geometric Control algorithm 180
based on a Dynamic Bicycle Model [17]. Rather than relying on a traditional PID loop to 181
correct steering error after it occurs, this model performs a physics-based transformation. 182
It maps validated curvature targets directly to specific steering wheel angles by solving 183
the equations of motion for a two-wheeled vehicle representation, accounting for mass, 184
wheelbase, and steering ratio. This open-loop approach allows the vehicle to preemp- 185
tively align with the desired trajectory. System stability is enforced saturation thresholds 186
that serve as safety governors. They flag any deviation between the commanded and 187
measured steering angles that exceed a 2.5° threshold every 10ms. The lateral control out- 188
puts are paused while steering is controlled by the driver and resumed when the driver 189
stops applying torque to the wheel. 190

The control loop handles reading and decoding CAN-FD inputs from the vehicleinto 191
vehicle state data structures. It also uses the outputs from the planner process to inform 192
control decisions which are then encoded as CAN-FD outputs. When a plan is received, 193
the vehicle state data structures are used to determine what attributes of the vehicle need 194
to be updated to satisfy the plan. Once the required changes are determined, the CAN-FD 195
messages containing the updated attributes are populated, encoded with the 19



Electronics 2025, 14, x FOR PEER REVIEW 6 of 16

manufacturer’s DBC file specifications, and sent over the CAN-FD network. The outputs 197
are currently sent over a virtual CAN-FD channel that matches the vehicle. Once valida- 198
tion of performance and safety on a real vehicle is complete, the output will be sent on the 199
vehicle’s CAN-FD network to control it. 200

2.2. Extensibility 201

For a developer to replace the X2000’s inference model with their own, they must 202
create two sub-models with inputs and outputs that align with the two sub-model being 203
used from Openpilot [18]. The first model will be referred to as the vision model and the 204
second as the policy model, although developers do not necessarily have to keep that same 205
model structure. The inputs to the initial vision model must include two pairs of 512 by = 206
256 resolution images in the YUV color space [18]. One pair contains the current narrow 207
and wide views and the other pair contains the narrow and wide views from the last 208

frame. The inputs to the policy model include: 209
e Five seconds of one-hot encoded desired actions at 100 Hz with shape (100,8); 210
e A one-hot encoded indicator for left or right-handed traffic with shape (2,); 211
e Speed and steering delays with shape (2,); 212
e A feature buffer for the last five seconds of feature data at 20 Hz with shape (100,512) 213

(18]. 214

The outputs must be 33 future trajectory and velocity points at 50 ms intervals. Included 215
are the orientation, angular velocity, position, linear velocity, and linear acceleration [19]. 216
Each includes a value for three axes of movement to create an output of shape (33, 15) [19]. 217
The sub-models must be in the ONNX file type to be loaded in place of the original sub- 218
models. 219

To integrate a new sensor, a hardware connection is made using the external con- 220
nectors of the X2000. Python libraries such as python-can, socket, or pyserial are used to 221
communicate with the sensor using its respective communication protocol. When follow- 222
ing the X2000’s software architecture, a developer would create a software module for the = 223
sensor with a class that can be imported into any other files as needed. The class would 224

include methods to: 225
e Initialize the sensor connection and class attributes; 226
e Read data from the sensor; 227
e  Write data to the sensor (if applicable); 228
e Update the sensor’s class attributes with the data being collected. 229

Other specialized routines can be included as needed. By using this architecture for sensor 230
integration, an ADAS process can have the new sensor added to it with as few as three 231
lines of code. One line imports the sensor class, another creates the sensor object using the 232
imported class, and the third calls the sensor class’s read method to get the sensor data. 233

2.3. Al Compute Hardware 234

The X2000 uses an Nvidia Jetson AGX Orin system-on-chip. Its GPU has 1,792 CUDA 235
cores and 56 tensor cores [20]. Its CPU is an 8-core Arm Cortex-A78AE processor running 236
at 2.2 GHz with 2 MB of L2 cache and 4 MB of L3 cache. It has 32 GB of LPDDR5 RAM 237
running at 204.8 GB/s shared by the CPU and GPU [21]. There are 57GB of eMMC storage 238
and an additional option for 1 TB SSD of data storage. It also has automotive connectors 239
to match the vehicle connectors for 12V power, CAN-FD, and GMSL2 cameras. Desktop 240
standard connectors are provided for bench-top use, including USB-A 3.0, USB-C, ether- 241
net, and HDMIL. Its operating system is Ubuntu 22.04. Development can be done directly = 242
on the X2000 with the standard desktop computer connections. Installing it in the vehicle 243



Electronics 2025, 14, x FOR PEER REVIEW 7 of 16

only requires connecting the power, CAN-FD, and GMSL2 connectors to the vehicle’s wir- 244
ing harnesses. 245

This Nvidia platform was chosen as it is specialized for edge Al applications [20,21]. 246
The tensor cores of the GPU are dedicated to performing the fast, complex matrix compu- 247
tations required by deep learning models. It has features such as a deep learning acceler- 248
ator (DLA) and programmable vision accelerator (PVA) that optimize how the hardware 249
executes computations for deep learning and computer vision. This platform also enables 250
the X2000’s software to leverage Nvidia’s Al libraries such as CUDA and TensorRT to take 251
full advantage of the available hardware. 252

Figures 4 and 5 show the overall design of the X2000. The Nvidia Jetson AGX Orin 253
platform is implemented on a custom PCBA. The PCBA includes all the required connec- 254
tions for multiple GMSL2 cameras, the vehicle’s CAN-FD communication, and other typ- 255
ical computer IO. Currently the CAN-FD interface is compatible with the Ford Mach-E, 256
taking the place of the vehicle’s stock ADAS ECU. The design can be adapted to other 257
vehicles by changing the X2000’s CAN-FD connector to accept that vehicle’s stock CAN- 258
FD harness connector. The DBC file and CAN-FD parsing software must also be changed 259
to encode and decode that manufacturer’s CAN-FD messages. 260

REERIVIEY

ADAS DEVK)T

261
Figure 4. The X2000’s overall design including its display, USB, ethernet, and Wi-Fi antenna con- 262

nectors. 263

Pin7||Pin8
CAN-FDLO | | CAN-FD HI
(Mach E) | | (Mach E)

D==2VI=W

ADAS DEVKIT 264
Figure 5. The X2000's power, CAN-FD, and GMSL2 camera connectors. 265
2.4. CAN-FD Interface 266

The X2000 simulates a portion of its CAN-FD communication while real control ofa 267
vehicle remains a work in progress. The interface reads real CAN-FD messages from the 268
test vehicle and parses them for use by the ADAS software. The python-can library isused 269
to create a virtual second CAN-FD network that matches the vehicle’s CAN-FD configu- 270
ration. Once the control process calculates the required outputs to control the vehicle, they 271
are sent over the virtual CAN-FD interface. Work is in progress to validate that the control 272
commands generated are safe to use on a real test vehicle while driving and that they can 273
be communicated on the CAN-FD bus without issues. End-to-end CAN-FD pipeline val- 274
idation, simulated road testing, and real road testing validation are planned for February 275
of 2026. Once the integrity and safety of the simulated control commands are validated, 276
complete testing of vehicle controls will be possible by updating the python-can settings 277
to output to the vehicle’s CAN-FD channel instead of the virtual channel. 278



Electronics 2025, 14, x FOR PEER REVIEW 8 of 16

The X2000 receives the same CAN-FD inputs received by the stock ADAS ECU of the 279
vehicle. This is enabled as the X2000 replaces the stock Ford Mach-E’s lane centering ECU 280
This stock lane centering ECU is referred to by Ford as Image Processing Module A or 281
IPMA. The X2000’s CAN-FD and power connectors connect to the vehicle’s wiring har- 282
ness containing the CAN-FD high, CAN-FD low, and power supply wires. The CAN-FD 283
interface reads CAN-FD data packets every 10 ms. A filter on the inputs is used to ignore 284
any received CAN-FD frames that are not relevant to what the X2000 needs. A DBC file 285
contains manufacturer-specific information defining the CAN-FD messages utilized inthe 286
manufacturer’s vehicles [22]. That information is used to decode received CAN-FD frame 287
inputs and to encode CAN-FD frame outputs created for vehicle control [22]. 288

The X2000’s software reads relevant CAN-FD frames and uses the DBC file to parse 289
them into useful data that can be stored in manufacturer-agnostic data structures. One 290
data structure stores the data received via CAN-FD after it is decoded. This data structure 291
has 74 parameters tracking characteristics about the vehicle that change as it drives such 292
as speed, steering angle, and gas and brake pedal engagement. Another predefined data 293
structure stores 120 parameters for vehicle characteristics that do not change such as ve- 294
hicle dimensions, weight, steering characteristics, and acceleration thresholds. 295

The vehicle state model formed by this data helps the X2000’s control and inference 296
processes to determine what the vehicle needs to do to drive along its target trajectory 297
safely and efficiently. When those actions are determined, parameters for the vehicle’s 298
specific CAN-FD frames are calculated and encoded using the DBC file. The encoding 299
done with the DBC file ensures that the CAN-FD frames generated for control are in a 300
format readable by the vehicle they are being created for [22]. 301

2.5. Throttle-by-Wire & Brake-by-Wire Control 302

The X2000 simulates control of the throttle-by-wire and brake-by-wire systems using 303
an acceleration CAN-FD message. The CAN-FD message includes values for the follow- 304

ing: 305
e Total braking acceleration requested in m/s?; 306
e Acceleration requested in m/s?; 307
e  Cruise control enabled or disabled; 308
e Allow resuming cruise control; 309
e Active deceleration request; 310
e Stop state request. 311

The braking acceleration limits are -20 m/s? to 11.9449 m/s2. A negative braking accelera- 312
tion request will apply the brake actuators more and a positive value will release the 313
brakes. The throttle has acceleration limits of -5 m/s? to 5.23 m/s?. A negative acceleration 314
request will ease the throttle actuator and a positive value will engage it. The cruise con- 315
trol flags tell the powertrain ECU and braking ECUs whether to accelerate or decelerate 316
the vehicle. 317

2.6. Electronic Power Assisted Steering (EPAS) Control 318

The X2000 uses EPAS technology by providing target path data to the vehicle’s 319
power steering control module (PSCM). The X2000 performs inference on its video feed 320
to determine the trajectory the car should follow to stay centered in its lane, turn, or make 321
a lane change. The X2000 creates a lateral control CAN-FD message that can be used to 322
instruct the vehicle’s PSCM of how to control the EPAS system. The fields for steering 323
adjustments in the CAN-FD message are the following: 324

e The vehicle’s target offset from the center of the lane in meters; 325
o the offset angle from the vehicle’s path in radians; 326



Electronics 2025, 14, x FOR PEER REVIEW 9 of 16

e the curvature the vehicle should follow in inverse meters (1/m); 327
e the rate of change of that curvature in inverse meters squared (1/m?); 328
e enabling or disabling lateral control; 329
e how closely the vehicle should follow the given curvature; 330
e if the driver’s hands are on the wheel for safety. 331
2.7. GMSL2 Camera 332

The X2000 uses a GMSL2 camera manufactured by StereoLabs called the ZED X One. 333
Their ZED Link Duo GMSL2 deserializer receives the video feed from the camera [23]. 334
The ZED X One has a resolution of up to 1920 by 1200 pixels [23]. Its stock lens has a 91° 335
FOV diagonally, 80° horizontally, and 52° vertically. It records video at up to 60 FPS, 336
which the X2000 takes advantage of by only sampling one of every three frames to guar- 337
antee the 20 FPS framerate expected by the reference computer vision model. The ZED X 338
One has an integrated accelerometer that can be used for orientation calibration [23]. 339
GMSL2 allows for fast, lossless video transfer, so the X2000’s computer can receive high 340
image quality in real-time [24]. The camera mounts in the vehicle’s stock forward camera 341
location to make integration simple. The images from the camera are cropped and pro- 342
jected to an additional narrow area of focus so the computer vision model can perform 343
coarse and fine inference on the scene with a wide and narrow view, as required by the 344
Al model provided by Openpilot 0.10.1. 345

2.8. Safety 346

Several safety features are implemented in the X2000’s software. It maintains the 347
safety features and guidelines included in the original Openpilot system [25]. The driver 348
is required to be attentive and prepared to take control of the vehicle at all times. The 349
system can be disengaged by pressing the vehicle’s Cruise Control button. Autonomous 350
steering can be overridden by applying torque to the steering wheel. Velocity control can 351
be disabled by manually engaging either the throttle or brake. The GUI provides audio 352
and visual feedback to indicate that the driver needs to take manual control when the 353
video, radar, or CAN-FD data is no longer being received after 250 ms. The vehicle’'s CAN- 354
FD protocol and the X2000’s control algorithms enforce redundant steering torque and 355

acceleration limits. 356
3. Results 357
3.1. Introduction 358

The results presented and discussed in the following sections were gathered using 359
data logged by the X2000 during various driving scenarios. Characteristics of the route 360

include: 361
e Length: 20 Minutes; 362
e Environment: Daytime, United States Interstate Highway; 363
o Traffic Density: Medium/Low; 364
e  Weather: Partly Cloudy; 365
e Number of Routes: 1. 366

A script is used to send the CAN-FD and video data to the X2000’s control and inference 367
processes with the same format and timings as the original recording. Sections 3.2 and 3.3 368
demonstrate the efficiency of the system for inference and control. Processing speed is 369
critical for real-time systems so the X2000 must be fast and consistent for the safety of the 370
user. Section 3.4 and 3.5 demonstrate the computational capacity of the X2000 during 371
ADAS testing. Reaching maximum capabilities of the hardware can lead to skipped 372



Electronics 2025, 14, x FOR PEER REVIEW 10 of 16

frames, degrading performance, and a lack of headroom for software extensibility. It is 373
important to understand where the device’s limitations are and what can be done to cor- 374
rect them. While the reference inference model from Openpilot is already proven to make 375
accurate predictions [7], a future goal for evaluating the performance of the X2000 is to 376
compare the vehicle’s state received over CAN-FD with the control output decisions. Do- 377
ing this validates the system outputs are in line with recorded driving decisions made by 378
a human driver. 379

3.2. Control End-to-End Latency 380

The control process’s performance is evaluated by the end-to-end latency. The sam- 381
ple time starts when an input is received. It is defined by the time it takes to parse the 382
input, execute control calculations, generate a control output, and transmit it. Research 383
done by Saez-Perez et al. on the end-to-end latency of the original Openpilot system found 384
that the vehicle control process should have a latency of 10 ms between inputs with a 385
standard deviation of about 2 ms [26]. Figure 6 shows the CAN-FD controls are processed 386
with an average processing time of 10.11 ms per cycle. 89.77% of cycles meet the target 387
processing timing of 10 ms. 9.56% of cycles take an additional 1 ms. 0.67% take an addi- 388
tional 2 ms or more. The maximum latency is 43 ms and the minimum is 2 ms. The stand- 389
ard deviation is taken as a rolling average standard deviation over the last 10 data points. 390
Figure 7 shows that it remains primarily below 1 ms with occasional spikes. The overall 391
average standard deviation is 0.61 ms. The X2000’s control process design performs well 392
to meet the required speeds for real-time control, with 99.33% of cycles meeting the timing 393
requirement, and the 42ms an outlier on initial start-up. 394

Control - End-to-End Latency Distribution

== Mean: 10.11 ms

100000

80000

60000

frequency

40000

20000

20 30 40
End-to-End Latency (ms)

395
Figure 6. Distribution of the end-to-end latency for each control cycle. 396
Control - End-to-End Latency Stability (Rolling Standard Deviation)
Rolling Std Dev (Window = 10)
10 -+++ Overall Std Dev: 0.61 ms
8
z
26
3
-
2
0
0 200 400 600 800 1000 1200
Time (s) 397

Figure 7. Overall average standard deviation and rolling standard deviation of the control process’s 398
end-to-end latency. 399



Electronics 2025, 14, x FOR PEER REVIEW 11 of 16

While the latency is highly robust, sporadic spikes were observed. The spikes suggest 400
issues with causes such as resource contention, garbage collection, or the thermal throt- 401
tling issues discussed in Section 3.5. Design methods such as shared memory help to limit 402
the use of implicitly shared resources that can lead to resource contention [27]. Taking that = 403
methodology further by assigning specific CPU cores to the X2000’s process could further 404
improve stability [27]. Garbage collection can also be managed more explicitly to avoid 405
spikes. Active cooling is planned for a future design of the X2000 to address thermal per- 406
formance, which is expected to improve stability by preventing thermal throttling. 407

3.3. Inference End-to-End Latency 408

The inference process’s end-to-end latency is determined by the time taken to receive 409
a video frame, perform inference, and write the output of the model to shared memory. 410
Saez-Perez et al. found the end-to-end latency for inference is expected to be 100 ms, with 411
a standard deviation of about 7 ms [26]. Figure 8 shows the video frames are processed 412
with an average of 57.85 ms per frame. The highest processing time is 102 ms and the 413
lowest is 44 ms. The distribution of processing times follows a log-normal distribution 414
[28]. This distribution is caused by several variables such as memory access, GPU and 415
CPU workloads, and caching contributing multiplicatively to the overall inference time 416
[28]. Figure 9 shows the rolling standard deviation over the last 10 video frames. It ranges 417
mostly from 2 ms to 8 ms with occasional spikes. The overall average standard deviation 418
is 5.72 ms. Compared to the findings of Saez-Perez et al.,, the X2000’s inference design 419
performs very well to achieve real-time inference, averaging a latency time 42.15% faster 420
than required [26]. 421

Inference - End-to-End Latency Distribution

! == Mean: 57.85 ms

2500

2000

1500

Frequency

1000

0 20 40 60
End-to-End Latency (ms)

422
Figure 8. Distribution of the end-to-end latency for each frame used for inference. 423
Inference - End-to-End Latency Stability (Rolling Standard Deviation)
1 Rolling Std Dev (Window = 10)
+=+ Overall Std Dev: 5.72 ms
14
12
é 10
g s
2 o lUIE-IH Rt R SAA U B LA N R LA A - -
4
2
0
0 200 400 600 800 1000 1200
Time (s) 424

Figure 9. Overall average standard deviation and rolling standard deviation of the inference pro- 425
cess’s end-to-end latency. 426



Electronics 2025, 14, x FOR PEER REVIEW 12 of 16

Only one frame exceeded the required end-to-end latency of 100 ms at 102 ms, but = 427
spikes in the rolling standard deviation suggest some system instability that could be im- 428
proved upon. The contributing factors to the log-normal distribution of the end-to-end 429
latency mean it would not be expected that inference is as stable as control. However, the 430
same methods discussed in Section 3.2 could be applied to the inference process as well. 431
Explicitly defining how system resources are used wherever possible will minimize the 432
likelihood that they conflict and cause latency spikes. 433

3.4. Hardware Utilization and Power Consumption 434

Figures 10 through 13 show the behavior of the X2000’s hardware over time as it 435
performs ADAS testing. The CPU, GPU, and RAM utilization were measured as a per- 436
centage of their total bandwidth utilized over time. The CPU, GPU, and overall power 437

consumption were measured in Watts. The X2000 ran its main processes for ADAS testing 438
while the data was recorded. 439

CPU Utilization Over Time
100%

l

—— cPU

Utilization (%)

0%

o4

1000 2000 3000 4000 5000

Time (<) 440
Figure 10. Jetson AGX Orin CPU utilization over time while performing ADAS testing. 441

GPU Utilization Over Time
100%

— GPU

Utilization (%)

0%

°

1000 2000 3000 4000 5000

Time (5) 442
Figure 11. Jetson AGX Orin GPU utilization over time while performing ADAS testing. 443
RAM Utilization Over Time
100%
—— RAM
80%
g 60%
% 0%
20%
0% T T T T T T
0 1000 2000 3000 4000 5000
Time (5) 444

Figure 12. Jetson AGX Orin RAM utilization over time while performing ADAS testing. 445



Electronics 2025, 14, x FOR PEER REVIEW 13 of 16

Component Power Consumption Over Time

—— Total Power
CPU Power
2251 — GPU Power

Power Consumption (Watts)

5.0 4

0 1000 2000 3000 4000 5000

Time (s) 446

Figure 13. Jetson AGX Orin power consumption over time by the CPU, GPU, and overall device 447
during ADAS testing. 448

CPU, GPU, and RAM utilization averaged 66.6%, 57.4%, and 32.4% respectively. The CPU 449
utilization is higher since it is responsible for running every ADAS process while the GPU is only 450
performing inference. Since the GPU is only under load for brief periods in the utilization measure- 451
ment window when a new video frame is received, it causes high and low spikes as well as the 452
somewhat low average utilization [29]. RAM utilization is relatively consistent since most of the 453
memory it requires is allocated when the main processes are initialized at startup. The specified 454
power draw of the Jetson AGX Orin is 15W to 40W, so the average of 21.76W total is good since itis 455
at the low end of the specified range [21]. 456

3.5. Thermal Performance 457

Despite the low power consumption, the thermal performance is an area in need of improve- 458
ment. The chipset temperatures rise steadily at 0.43°C per minute for both the CPU and GPU to 459
maximums of 100°C and 93°C respectively. High temperatures lead to thermal throttling, a hard- 460
ware safety measure that reduces clock speeds of the CPU or GPU thereby reducing throughput 461
[30]. The temperature curves in Figure 14 flatten when the Jetson AGX Orin begins thermal throt- 462

tling. 463
Component Temperature Over Time
100 4 — CPU
GPU
20
g
L 80
H
70
60
6 lDbO zobo 30b0 QDbO 5060
Time (s) 464
Figure 14. Jetson AGX Orin CPU and GPU chipset temperature over time. 465

Thermal throttling can negatively affect computational throughput due to a feature called dy- 466
namic voltage and frequency scaling (DVFS) [30,31]. DVFS is defined in Equation (1), where 467
Pgynamic is the power consumption of the chip, « is the activity factor as a percentage of transistors 468
switching, Cy, is the chipset’s load capacitance, Vyq is the supply voltage, and f is the clock fre- 469
quency. The AGX Orin adjusts its CPU clock frequency, GPU clock frequency, and supply voltages 470
to regulate and reduce its power consumption, thereby protecting it from overheating. Reduced 471
throughput introduced by DVEFES presents a risk of model performance degradation such as missed 472

frames, late outputs, or even complete system shutdown [31]. 473



Electronics 2025, 14, x FOR PEER REVIEW 14 of 16

Paynamic = & X Cp, X Vg X f (1) 474

Praveen et al. found that passive cooling using heat sinks made of copper or aluminum are 475
effective to improve thermal performance of hardware for ADAS applications [31]. They recom- 476
mend using thermal pastes or pads to facilitate heat transfer from the chipset to the heat sink. De- 477
signing the heatsink to maximize its surface area and contact with the chipset allows the surround- 478
ing air to extract heat much more effectively [31]. 479

This research suggests active cooling is also necessary. Active cooling extracts heat from the 480
system using electronics with moving parts such as fans or a water pump [31]. If passive cooling is 481
not effective enough to prevent thermal throttling, adding fans to remove the hot air from the 482
X2000’s heat sinks and enclosure can further improve its thermal performance [31]. There are plans 483
for the next iteration of the X2000’s design to include active cooling via fans. In cases of extreme 484
thermal loads, a water pump, a heat sink with liquid routing channels, and a radiator can be used 485

to very efficiently extract heat from the system [31]. 486

4. Discussion 487

This article provides a thorough evaluation of the X2000. Overall, it proves to be a 488
capable platform for developers to leverage for rapid ADAS development. It provides an 489
accessible, extensible, ready-to-use platform for ADAS development that simplifies the 490
technical barriers to entry for new developers and researchers. Test results show that it 491
can process CAN-FD inputs, build a vehicle state model, and send CAN-FD outputs re- 492
quired for ADAS within 1 ms of the target time at a rate of 99.33%. It can also perform 493
inference on live video to determine vehicle steering and velocity plans at an average of 494
57.85 ms per frame, 42.15% below the requirement of 100 ms. The Jetson AGX Orin hard- 495
ware performs well with sufficient computational capacity for additional features and ca- 496
pabilities in the future, though it requires active cooling when running for long periods. 497

The primary piece of future work for the X2000 is the implementation of real-time 498
vehicle control by validating the safety and integrity of the CAN-FD communication pipe- 499
line on a real vehicle while driving in a wide variety a scenarios. It is essential that the 500
driving decisions made by the X2000 can be validated in real driving scenarios for safety, 501
accuracy, and comfort. As part of the controls validation, a method of comparing recorded 502
vehicle data with system output predictions is planned. This has the potential to validate 503
computer vision model accuracy and make overall ADAS development easier by enabling 504
benchtop model testing. Thermal solutions are planned to ensure continuous operation at 505
high load does not trigger thermal throttling. To further improve safety, sensor faults can 506
be detected with methods such as attention mechanisms to improve system safety and 507
reliability [32]. Finally, it is planned to establish structured methods of migrating the hard- 508
ware and software between test vehicles and hardware platforms. 509

Author Contributions: Conceptualization, M.G. and G.P.; methodology, M.G.; resources, G.P.; soft- 510
ware, M.G..; validation, M.G.; formal analysis, M.G.; investigation, M.G.; resources, M.G.; data cu- 511
ration, M.G.; writing —original draft preparation, M.G.; writing—review and editing, M.G. and G.P.; 512
visualization, M.G.; supervision, G.P.; project administration, G.P. All authors have read and agreed 513

to the published version of the manuscript. 514
Funding: This research received no external funding. 515

Data Availability Statement: Code and hardware are available by request from the authors. Data 516
presented in this study is available to download at: https://github.com/MikeGiuliani/Analyzing-the- ~ 517
X2000-Advanced-Driver-Assistance-Development-Kit-Supplementary-Mats.git. 518



Electronics 2025, 14, x FOR PEER REVIEW 15 of 16

Acknowledgments: We thank Eliyahu Davis and Deepview for providing hardware and software
to perform this research with. We thank the Comma.ai team and their GitHub contributors for mak-

ing the software behind Openpilot open source and free to use for projects like the X2000.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ADAS Advanced Driver Assistance System

EPAS Electronic Power Assisted Steering

GMSL2 Second-Generation Gigabit Multimedia Serial Link
CAN-FD Controller Area Network Flexible Data-Rate

DBC CAN Database
MPC Model Predictive Control
BGR Blue-Green-Red

RGBA Red-Green-Blue-Alpha
PSCM Power Steering Control Module
DVFS Dynamic Voltage and Frequency Scaling

References

1.  Nvidia DRIVE Quote Request. Available online: https://arrow.tfaforms.net/5113032 (accessed 7 January 2026).

2. DRIVE AGX Developer Kits. Available online: https://developer.nvidia.com/drive/agx#section-orin-hardware-accessories (ac-
cessed 15 January 2026).

3. Nvidia DRIVE OS Linux SDK API Reference. Available online: https://developer.nvidia.com/docs/drive/drive-0s/6.0.10/pub-
lic/drive-os-linux-sdk/api_reference/files.html (accessed 8 January 2026).

4. Nangz, S, Furia, C. A. A Comparative Study of Programming Languages in Rosetta Code. 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering 2015, 778-788, https://doi.org/10.1109/icse.2015.90.

5. apollo. Available online: https://github.com/ApolloAuto/apollo?tab=readme-ov-file#architecture (accessed 7 January 2026).

6.  Apollo Hardware Development Platform. Available online: https://developer.apollo.auto/platform/hardware.html (accessed 15
January 2026).

7. openpilot — open source advanced driver assistance system. Available online: https://comma.ai/openpilot (accessed on 15 Jan-
uary 2026).

8.  Openpilot process_config.py. Available online: https://github.com/commaai/openpilot/blob/master/system/manager/pro-
cess_config.py (accessed 7 January 2026).

9.  Openpilot service.py. Available online: https://github.com/commaai/openpilot/blob/master/cereal/services.py (accessed 7 Jan-
uary 2026).

10. comma four. Available online: https://comma.ai/shop/comma-four (accessed 15 January 2026).

11. How openpilot works in 2021. Available online: https://blog.comma.ai/openpilot-in-2021/ (accessed 15 January 2026).

12.  Goff, M,; Hogan, G.; Hotz, G.; Armand; Raczy, K.; Schéfer, H.; Shihadeh, A.; Zhang, W.; Yousfi, Y. Learning to Drive from a
World Model. arXiv (Cornell University) 2025, https://doi.org/10.48550/arxiv.2504.19077.

13. openpilot. Available online: https://github.com/commaai/openpilot?tab=MIT-1-ov-file#readme (accessed on 19 August 2025).

14. MIT License. Available online: https://choosealicense.com/licenses/mit/ (accessed on 19 August 2025).

15. multiprocessing — Process-based parallelism — Python 3.8.3rc1 documentation. Available online: https://docs.python.org/3/li-
brary/multiprocessing.html (accessed on 7 December 2025).

16. Vasu, P. K. A,; Gabriel, J.; Zhu, J.; Tuzel, O.; Ranjan, A. FastViT: A Fast Hybrid Vision Transformer using Structural Reparame-
terization. arXiv (Cornell University) 2023, https://doi.org/10.48550/arXiv.2303.14189.

17. Ge, Q; Sun, Q.; Li, S. E.;; Zheng, S.; Wu, W.; Chen, X. Numerically Stable Dynamic Bicycle Model for Discrete-Time Control.
arXiv (Cornell University) 2021, 128-134, https://doi.org/10.1109/ivworkshops54471.2021.9669260.

18. Neural networks in openpilot. Available online: https://github.com/commaai/openpilot/tree/master/selfdrive/modeld/models
(accessed 26 January 2026).

19. parse_model_outputs.py. Available online : https://github.com/commaai/openpilot/blob/master/selfdrive/mod-

eld/parse_model_outputs.py (accessed 26 January 2026).

519
520
521

522

523

524

525

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557


https://doi.org/10.1109/ivworkshops54471.2021.9669260

Electronics 2025, 14, x FOR PEER REVIEW 16 of 16

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Deepview Corp. Al Vehicle Computer (Devkit). Available online:
https://www.deepviewai.com/_files/ugd/51lea66_afd601f136fd473eafbf55eca3c9fa07.pdf (accessed on 19 August 2025).
Karumbunathan, L. NVIDIA Jetson AGX Orin Series a Giant Leap Forward for Robotics and Edge Al Applications Technical
Brief. Available online: https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-tech-
nical-brief.pdf (accessed on 19 August 2025).

M. Boland, H.; I. Burgett, M.; J. Etienne, A.; M. Stwalley III, R. An Overview of CAN-BUS Development, Utilization, and Future
Potential in Serial Network Messaging for Off-Road Mobile Equipment. Technology in Agriculture 2021,
https://doi.org/10.5772/intechopen.98444.

StereoLabs. ZED X One Camera and SDK Overview. Available online: https://www.stereolabs.com/products/zed-x-one (ac-
cessed on 19 August 2025).

Wang, K. Gigabit Multimedia Serial Link (GMSL) Cameras as an Alternative to GigE Vision Cameras. ADI Analog Dialogue 2023,
57 (4).

Openpilot Safety. Available online: https://github.com/commaai/openpilot/blob/master/docs/SAFETY.md (accessed 19 January
2026).

Saez-Perez, J.; Diez-Tomillo, J.; Tena-Gago, D.; Alcaraz-Calero, ]J. M.; Wang, Q. Design, Implementation and Validation of a
Level 2 Automated Driving Vehicle Reference Architecture. Expert Systems 2025, 42 (6), https://doi.org/10.1111/exsy.70050.
Deng, Z.; Zhang, Z.; Li, D.; Guo, Y.; Ye, Y,; Ren, Y,; Jia, N.; Hu, X. Interference-Free Operating System: A 6 Years’ Experience in
Mitigating  Cross-Core  Interference in  Linux. IEEE  Real-Time  Systems  Symposium 2024,  308-321,
https://doi.org/10.1109/rtss62706.2024.00034.

Limpert, E.; Stahel, W. A.; Abbt, M. Log-Normal Distributions across the Sciences: Keys and Clues. BioScience 2001, 51 (5), 341-
352, https://doi.org/10.1641/0006-3568(2001)051[0341:Indats]2.0.co;2.

Gao, Y,; He, Y.; Li, X,; Zhao, B.; Lin, H.; Liang, Y.; Zhong, ]J.; Zhang, H.; Wang, J.; Zeng, Y.; Gui, K,; Tong, J.; Yang, M. An
Empirical Study on Low GPU Utilization of Deep Learning Jobs. ICSE 2024, 96, 1-13, https://doi.org/10.1145/3597503.3639232.
Benoit-Cattin, T.; Velasco-Montero, D.; Fernandez-Berni, J. Impact of Thermal Throttling on Long-Term Visual Inference in a
CPU-Based Edge Device. Electronics 2020, 9, 2106, https://doi.org/10.3390/electronics9122106.

Praveen, S. M.; Rammohan A. Active and Passive Cooling Techniques of Graphical Processing Units in Automotive Applica-
tions - a Review. Engineering Research Express 2024, 6 (2), https://doi.org/10.1088/2631-8695/ad513b.

Wang, S. Evaluating Cross-Building Transferability of Attention-Based Automated Fault Detection and Diagnosis for Air Han-
dling Units: Auditorium and Hospital Case Study. Building and Environment 2026, 287, https://doi.org/10.1016/j.build-
env.2025.113889.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

588
589
590



	1. Introduction
	2. Materials and Methods
	2.1. Software Reference Design
	2.2. Extensibility
	2.3. AI Compute Hardware
	2.4. CAN-FD Interface
	2.5. Throttle-by-Wire & Brake-by-Wire Control
	2.6. Electronic Power Assisted Steering (EPAS) Control
	2.7. GMSL2 Camera
	2.8. Safety

	3. Results
	3.1. Introduction
	3.2. Control End-to-End Latency
	3.3. Inference End-to-End Latency
	3.4. Hardware Utilization and Power Consumption
	3.5. Thermal Performance

	4. Discussion
	Abbreviations
	References

