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Abstract 8 

In this work, we present the design and evaluation of the X2000, a new development kit 9 
created to simplify and accelerate research for advanced driver assistance systems 10 
(ADAS). The X2000 is a complete ADAS development kit for the Ford Mach-E. It includes 11 
a forward-facing vehicle-mounted camera, vehicle mounted AI computer, controller area 12 
network flexible data-rate (CAN-FD) and 12V power connections, and a CAN-FD inter- 13 
face to the vehicle’s forward radar. Central to the kit is a novel ADAS software architec- 14 
ture designed for readability and extensibility. Included in the design are software mod- 15 
ules for: (1) Camera and radar interfacing. (2) Image processing. (3) AI model inference. 16 
(4) Data logging. (5) Steering and velocity planning. (6) Low-level vehicle controls for 17 
steering, acceleration, and braking. (7) Lane centering visualization to the car’s 17-inch 18 
touchscreen. To build on a proven system, the X2000 integrates the AI model, planner, 19 
low-level controls, and radar interfacing software from Openpilot. We build on the excel- 20 
lent work of the Openpilot team while creating a highly simplified system. Openpilot fea- 21 
tures 17 software processes and 77 inter-process messages while the X2000 uses 6 pro- 22 
cesses and 7 inter-process messages. 23 

Keywords: Artificial intelligence; computer vision; ADAS; rapid development; real-time 24 
computing 25 
 26 

1. Introduction 27 

Outfitting a vehicle for ADAS development is a time and resource intensive process. 28 
It requires installing a drive-by-wire control system, integrating and calibrating cameras 29 
and sensors, developing the ADAS software, and validating the complete system for safe 30 
road testing. There are existing solutions that seek to address these challenges. The X2000 31 
leverages aspects of these existing systems while providing a novel software architecture 32 
for faster ADAS development with the goal of lowering the barrier to entry for the crea- 33 
tion of new ADAS research and development programs. 34 

Existing solutions include 3 primary options: 35 

• Nvidia DRIVE developer kit; 36 
• Baidu Apollo; 37 
• Comma.ai Comma Four running Openpilot. 38 

Nvidia DRIVE includes state-of-the-art ADAS hardware along with advanced ADAS de- 39 
velopment software. It is accessible solely to approved developers of automated driving 40 
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software [1]. DRIVE also provides a list of supported sensors, yet these require test vehicle 41 
integration and calibration [2]. Finally, DRIVE is restricted to Nvidia’s C-based code and 42 
toolchains [3]. C requires more code for a given task than Python, which can limit rapid 43 
progress [4]. 44 

The Baidu Apollo features an extensive and highly capable open source software sys- 45 
tem [5]. They also have their own hardware platform and support a variety of added sen- 46 
sors [6]. While Apollo is accessible and capable for developers, its open source software is 47 
written in C++ [5]. C++ also requires more code for a given task than Python [4]. Longer 48 
code combined with their deep network of sensors and computers can increase develop- 49 
ment time [4,5]. 50 

Openpilot from Comma.ai offers an open source, Python-based software system with 51 
built-in drive-by-wire, camera, and radar interfacing [7]. For a given task, Python has 52 
shown itself to be a more efficient programming language by lines of code than other 53 
languages, which means software using it can be developed faster [4]. Openpilot’s com- 54 
puter vision inference model and control system has been validated on over 300 million 55 
miles of driving, which gives developers a strong foundation for building ADAS software 56 
[7]. This research directly observes a challenge for developers that is presented by 57 
Openpilot. Openpilot has a complex software architecture that includes 17 different pro- 58 
cesses with 77 different messages communicated between them [8,9]. This architecture 59 
makes extensibility of the software more difficult due to the complex interactions through- 60 
out the system. Openpilot is also only plug-and-play with the Comma Four as a hardware 61 
platform, which is a proprietary device from Comma.ai [10]. 62 

The X2000 combines the same state-of-the-art system-on-chip as the Nvidia DRIVE 63 
with the capabilities and development potential of Openpilot while optimizing it for rapid 64 
development and extensibility. The X2000 leverages its AI inference model, steering and 65 
velocity planning, and low-level vehicle control methods. Openpilot has 17 separate pro- 66 
cesses while the X2000’s architecture uses only 6 [8]. The architecture of Openpilot is 67 
shown in Figure 1 [11]. Reducing the number of processes aims to make the code more 68 
comprehensible for new developers and more extensible by reducing the complexity of 69 
the architecture. 70 

 71 

Figure 1. The software architecture of Openpilot. 72 
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The X2000’s architecture includes the diffusion transformer-based computer vision 73 
inference model from Openpilot for predicting road segmentation, object detection, future 74 
trajectory, and vehicle actions [12]. It runs on an Nvidia Jetson AGX Orin using Jetpack 75 
6.2 instead of Comma.ai’s proprietary hardware. Dedicated software modules facilitate 76 
camera and radar interfacing, inference by the AI model, steering and velocity planning, 77 
drive-by-wire vehicle control, data logging, and user interface display on the vehicle’s 78 
center screen. It is integrated and pre-calibrated to be used immediately with the Ford 79 
Mach-E. 80 

Its Jetson AI platform provides standardized connections for power, CAN-FD, and 81 
automotive-grade GMSL2 cameras. The CAN-FD interface uses a modular software and 82 
hardware design to simplify switching between test vehicles. A pre-calibrated road facing 83 
GMSL2 camera is included to enable the computer vision tasks within the reference soft- 84 
ware. While the Comma Four uses two separate cameras to capture images for inference, 85 
the software design in this research projects the images from a single camera into the two 86 
views needed for the computer vision model. This single camera method facilitates a sim- 87 
pler install process and cheaper hardware cost. 88 

This paper first discusses the technology and methodology behind the design of the 89 
X2000. Next, test results are presented that aim to provide an understanding of how well 90 
the X2000 can process data and handle computational loads while performing real-time 91 
ADAS testing. Finally, the results of that testing are analyzed, conclusions are drawn from 92 
them, and future research possibilities are discussed. 93 

2. Materials and Methods 94 

2.1. Software Reference Design 95 

The X2000’s ADAS software reference design focuses on simplified, understandable 96 
code. It is essential that the structure of the code and what each process does can be inter- 97 
preted and modified easily by developers. Other development kits such as the Nvidia 98 
DRIVE and Baidu Apollo use C or C++ which require more code compared to Python to 99 
perform the same tasks [3-5]. Openpilot uses Python but is designed with a network of 17 100 
different processes with 77 inter-process messages as seen in Figure 1 [8,9,11]. The X2000 101 
achieves its goal of simplicity and extensibility by restructuring Openpilot’s Python 102 
source code into just 6 main processes and three shared memory partitions with 7 inter- 103 
process messages. 104 

Openpilot is an open source Level 2 ADAS system from Comma.ai that runs on their 105 
proprietary hardware device called the Comma Four [7]. Openpilot’s software is available 106 
to the public under the MIT license [13]. This license allows Openpilot’s software to be 107 
used and developed for independent research projects such as the X2000 [14]. Openpilot 108 
0.10.1 is the Openpilot version used for this research [7]. The deep learning model behind 109 
Openpilot, and by extension the X2000, has been trained and validated across over 300 110 
million miles of driving, 56% of which were driven fully by Openpilot’s software under 111 
driver supervision [7]. The X2000 having a well-established model to build off of is essen- 112 
tial for confidence in its performance and having a strong foundation to develop from. 113 

Each major process and data structure of the X2000’s software is written using the 114 
class data structure. The overall structure and data flow of the software is shown in Figure 115 
2. The main processes include: 116 

• Preparing video frames for inference at 20 Hz; 117 
• Performing computer vision inference at 20 Hz; 118 
• Calculating vehicle control plans from inference outputs, vehicle state data, and radar 119 

using a model predictive control (MPC) algorithm at 20 Hz; 120 
• Processing CAN-FD inputs and outputs to execute control plans at 100 Hz; 121 
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• Formatting live camera, inference, and control data to be displayed on the vehicle’s 122 
center console screen at 20 Hz; 123 

• Logging video and CAN-FD data while driving at 20 Hz and 100 Hz respectively. 124 

 125 

Figure 2. Flow of data in the main processes of the X2000’s software. 126 

The video preprocessing, inference, and user interface processes communicate cam- 127 
era data through shared memory. Shared system memory is established by allocating the 128 
amount of memory the shared data needs to a specific memory address range in RAM. 129 
The shared_memory module of the multiprocessing Python library is used to define the 130 
shared memory partitions with globally known unique identifiers [15]. At startup, each 131 
process finds the location of the data it needs in memory using the global identifier. Each 132 
partition has its own set of methods defined for initialization, reading, and writing. Shared 133 
memory allows each process to run independently. They can be stopped and started as 134 
needed. This makes the system safer and faster to develop. If a process has stopped or 135 
failed, it can be restarted without the rest of the system also failing or needing to restart. 136 

In addition, the control and inference processes share data via the message passing 137 
software module of Openpilot 0.10.1 named cereal. The control process sends vehicle state 138 
and vehicle control predictions as a message, and the inference process sends the model 139 
predictions and planner outputs as a message to the control process. The message passing 140 
mechanism ensures only the latest data is processed by each. They run at different rates 141 
as the inference process uses a trained model that features images spaced 50 ms apart. The 142 
control process features control decisions that need to be communicated at the vehicle’s 143 
predetermined frequency for each CAN-FD message, as defined in the manufacturer’s 144 
DBC file. 145 

The overall flow of data starts with the camera interface reading video from the 146 
GMSL2 deserializer. The video preprocessing loop uses the original wide angle image 147 
from the camera to generate a second narrow angle image. It does this by cropping, up- 148 
sampling, and applying a lens distortion projection matrix to the original image to mimic 149 
a narrow angle lens. The camera produces 1,920 by 1,200 pixel Blue-Green-Red-Alpha 150 
(BGRA) images, which are converted to two images following reprojection. These are then 151 
converted to two 512 by 256 YUV images as required by the Openpilot inference model. 152 
For display to the vehicle’s screen the original BGRA image is converted to RGB. The 153 
model’s 3D predictions are overlaid onto the RGB image based on the camera’s intrinsic 154 
and extrinsic characteristics. The formatted video is passed to the inference loop through 155 
shared memory. 156 

The inference loop runs computer vision inference on the wide and narrow YUV 157 
images. The model, developed originally for Openpilot, uses two transformer networks 158 
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[12]. The first network’s architecture is based on FastViT [16]. It predicts features about 159 
the driving scene including lane lines, road edges, lead car positions, and the future tra- 160 
jectory of the test vehicle [12]. The second network is a diffusion transformer that takes 161 
the last five seconds of outputs from the first transformer as an input [12]. It predicts the 162 
final output of the model which includes velocity targets and the desired curvature for 163 
the test vehicle to follow. An image depicting the steering and velocity predictions from 164 
the X2000’s GUI is shown in Figure 3. The predictions are sent to the planner process so 165 
the control and MPC algorithm policies can be applied to them. 166 

 167 

Figure 3. An image from the X2000’s GUI depicting the forward camera’s view with an overlay of 168 
the steering plans (green) and velocity plans (red). 169 

The planner process splits the control problem into longitudinal and lateral pipelines, 170 
each using algorithmic strategies to maintain stable control of the vehicle. For longitudinal 171 
control, the system implements a Proportional-Integral-Derivative (PID) algorithm cou- 172 
pled with a feedforward component. This controller minimizes the error between the tar- 173 
get acceleration from the acceleration plan and the vehicle's current acceleration The pro- 174 
portional term addresses immediate error, the integral term eliminates steady-state offset 175 
by accumulating error over time, and the derivative term provides damping to prevent 176 
overshoot, while the feedforward term uses the raw target acceleration to provide a base- 177 
line command that improves system responsiveness. When the driver hits the throttle or 178 
brakes, the system stops sending longitudinal control commands. 179 

The lateral control pipeline utilizes a Feedforward Geometric Control algorithm 180 
based on a Dynamic Bicycle Model [17]. Rather than relying on a traditional PID loop to 181 
correct steering error after it occurs, this model performs a physics-based transformation. 182 
It maps validated curvature targets directly to specific steering wheel angles by solving 183 
the equations of motion for a two-wheeled vehicle representation, accounting for mass, 184 
wheelbase, and steering ratio. This open-loop approach allows the vehicle to preemp- 185 
tively align with the desired trajectory. System stability is enforced saturation thresholds 186 
that serve as safety governors. They flag any deviation between the commanded and 187 
measured steering angles that exceed a 2.5° threshold every 10ms. The lateral control out- 188 
puts are paused while steering is controlled by the driver and resumed when the driver 189 
stops applying torque to the wheel. 190 

The control loop handles reading and decoding CAN-FD inputs from the vehicle into 191 
vehicle state data structures. It also uses the outputs from the planner process to inform 192 
control decisions which are then encoded as CAN-FD outputs. When a plan is received, 193 
the vehicle state data structures are used to determine what attributes of the vehicle need 194 
to be updated to satisfy the plan. Once the required changes are determined, the CAN-FD 195 
messages containing the updated attributes are populated, encoded with the 196 
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manufacturer’s DBC file specifications, and sent over the CAN-FD network. The outputs 197 
are currently sent over a virtual CAN-FD channel that matches the vehicle. Once valida- 198 
tion of performance and safety on a real vehicle is complete, the output will be sent on the 199 
vehicle’s CAN-FD network to control it. 200 

2.2. Extensibility 201 

For a developer to replace the X2000’s inference model with their own, they must 202 
create two sub-models with inputs and outputs that align with the two sub-model being 203 
used from Openpilot [18]. The first model will be referred to as the vision model and the 204 
second as the policy model, although developers do not necessarily have to keep that same 205 
model structure. The inputs to the initial vision model must include two pairs of 512 by 206 
256 resolution images in the YUV color space [18]. One pair contains the current narrow 207 
and wide views and the other pair contains the narrow and wide views from the last 208 
frame. The inputs to the policy model include: 209 

• Five seconds of one-hot encoded desired actions at 100 Hz with shape (100,8); 210 
• A one-hot encoded indicator for left or right-handed traffic with shape (2,); 211 
• Speed and steering delays with shape (2,); 212 
• A feature buffer for the last five seconds of feature data at 20 Hz with shape (100,512) 213 

[18]. 214 

The outputs must be 33 future trajectory and velocity points at 50 ms intervals. Included 215 
are the orientation, angular velocity, position, linear velocity, and linear acceleration [19]. 216 
Each includes a value for three axes of movement to create an output of shape (33, 15) [19]. 217 
The sub-models must be in the ONNX file type to be loaded in place of the original sub- 218 
models. 219 

To integrate a new sensor, a hardware connection is made using the external con- 220 
nectors of the X2000. Python libraries such as python-can, socket, or pyserial are used to 221 
communicate with the sensor using its respective communication protocol. When follow- 222 
ing the X2000’s software architecture, a developer would create a software module for the 223 
sensor with a class that can be imported into any other files as needed. The class would 224 
include methods to: 225 

• Initialize the sensor connection and class attributes; 226 
• Read data from the sensor; 227 
• Write data to the sensor (if applicable); 228 
• Update the sensor’s class attributes with the data being collected. 229 

Other specialized routines can be included as needed. By using this architecture for sensor 230 
integration, an ADAS process can have the new sensor added to it with as few as three 231 
lines of code. One line imports the sensor class, another creates the sensor object using the 232 
imported class, and the third calls the sensor class’s read method to get the sensor data. 233 

2.3. AI Compute Hardware 234 

The X2000 uses an Nvidia Jetson AGX Orin system-on-chip. Its GPU has 1,792 CUDA 235 
cores and 56 tensor cores [20]. Its CPU is an 8-core Arm Cortex-A78AE processor running 236 
at 2.2 GHz with 2 MB of L2 cache and 4 MB of L3 cache. It has 32 GB of LPDDR5 RAM 237 
running at 204.8 GB/s shared by the CPU and GPU [21]. There are 57GB of eMMC storage 238 
and an additional option for 1 TB SSD of data storage. It also has automotive connectors 239 
to match the vehicle connectors for 12V power, CAN-FD, and GMSL2 cameras. Desktop 240 
standard connectors are provided for bench-top use, including USB-A 3.0, USB-C, ether- 241 
net, and HDMI. Its operating system is Ubuntu 22.04. Development can be done directly 242 
on the X2000 with the standard desktop computer connections. Installing it in the vehicle 243 
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only requires connecting the power, CAN-FD, and GMSL2 connectors to the vehicle’s wir- 244 
ing harnesses. 245 

This Nvidia platform was chosen as it is specialized for edge AI applications [20,21]. 246 
The tensor cores of the GPU are dedicated to performing the fast, complex matrix compu- 247 
tations required by deep learning models. It has features such as a deep learning acceler- 248 
ator (DLA) and programmable vision accelerator (PVA) that optimize how the hardware 249 
executes computations for deep learning and computer vision. This platform also enables 250 
the X2000’s software to leverage Nvidia’s AI libraries such as CUDA and TensorRT to take 251 
full advantage of the available hardware. 252 

Figures 4 and 5 show the overall design of the X2000. The Nvidia Jetson AGX Orin 253 
platform is implemented on a custom PCBA. The PCBA includes all the required connec- 254 
tions for multiple GMSL2 cameras, the vehicle’s CAN-FD communication, and other typ- 255 
ical computer IO. Currently the CAN-FD interface is compatible with the Ford Mach-E, 256 
taking the place of the vehicle’s stock ADAS ECU. The design can be adapted to other 257 
vehicles by changing the X2000’s CAN-FD connector to accept that vehicle’s stock CAN- 258 
FD harness connector. The DBC file and CAN-FD parsing software must also be changed 259 
to encode and decode that manufacturer’s CAN-FD messages. 260 

 261 

Figure 4. The X2000’s overall design including its display, USB, ethernet, and Wi-Fi antenna con- 262 
nectors. 263 

 264 

Figure 5. The X2000’s power, CAN-FD, and GMSL2 camera connectors. 265 

2.4. CAN-FD Interface 266 

The X2000 simulates a portion of its CAN-FD communication while real control of a 267 
vehicle remains a work in progress. The interface reads real CAN-FD messages from the 268 
test vehicle and parses them for use by the ADAS software. The python-can library is used 269 
to create a virtual second CAN-FD network that matches the vehicle’s CAN-FD configu- 270 
ration. Once the control process calculates the required outputs to control the vehicle, they 271 
are sent over the virtual CAN-FD interface. Work is in progress to validate that the control 272 
commands generated are safe to use on a real test vehicle while driving and that they can 273 
be communicated on the CAN-FD bus without issues. End-to-end CAN-FD pipeline val- 274 
idation, simulated road testing, and real road testing validation are planned for February 275 
of 2026. Once the integrity and safety of the simulated control commands are validated, 276 
complete testing of vehicle controls will be possible by updating the python-can settings 277 
to output to the vehicle’s CAN-FD channel instead of the virtual channel. 278 
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The X2000 receives the same CAN-FD inputs received by the stock ADAS ECU of the 279 
vehicle. This is enabled as the X2000 replaces the stock Ford Mach-E’s lane centering ECU 280 
This stock lane centering ECU is referred to by Ford as Image Processing Module A or 281 
IPMA. The X2000’s CAN-FD and power connectors connect to the vehicle’s wiring har- 282 
ness containing the CAN-FD high, CAN-FD low, and power supply wires. The CAN-FD 283 
interface reads CAN-FD data packets every 10 ms. A filter on the inputs is used to ignore 284 
any received CAN-FD frames that are not relevant to what the X2000 needs. A DBC file 285 
contains manufacturer-specific information defining the CAN-FD messages utilized in the 286 
manufacturer’s vehicles [22]. That information is used to decode received CAN-FD frame 287 
inputs and to encode CAN-FD frame outputs created for vehicle control [22]. 288 

The X2000’s software reads relevant CAN-FD frames and uses the DBC file to parse 289 
them into useful data that can be stored in manufacturer-agnostic data structures. One 290 
data structure stores the data received via CAN-FD after it is decoded. This data structure 291 
has 74 parameters tracking characteristics about the vehicle that change as it drives such 292 
as speed, steering angle, and gas and brake pedal engagement. Another predefined data 293 
structure stores 120 parameters for vehicle characteristics that do not change such as ve- 294 
hicle dimensions, weight, steering characteristics, and acceleration thresholds. 295 

The vehicle state model formed by this data helps the X2000’s control and inference 296 
processes to determine what the vehicle needs to do to drive along its target trajectory 297 
safely and efficiently. When those actions are determined, parameters for the vehicle’s 298 
specific CAN-FD frames are calculated and encoded using the DBC file. The encoding 299 
done with the DBC file ensures that the CAN-FD frames generated for control are in a 300 
format readable by the vehicle they are being created for [22]. 301 

2.5. Throttle-by-Wire & Brake-by-Wire Control 302 

 The X2000 simulates control of the throttle-by-wire and brake-by-wire systems using 303 
an acceleration CAN-FD message. The CAN-FD message includes values for the follow- 304 
ing: 305 

• Total braking acceleration requested in m/s2; 306 
• Acceleration requested in m/s2; 307 
• Cruise control enabled or disabled; 308 
• Allow resuming cruise control; 309 
• Active deceleration request; 310 
• Stop state request. 311 

The braking acceleration limits are -20 m/s2 to 11.9449 m/s2. A negative braking accelera- 312 
tion request will apply the brake actuators more and a positive value will release the 313 
brakes. The throttle has acceleration limits of -5 m/s2 to 5.23 m/s2. A negative acceleration 314 
request will ease the throttle actuator and a positive value will engage it. The cruise con- 315 
trol flags tell the powertrain ECU and braking ECUs whether to accelerate or decelerate 316 
the vehicle. 317 

2.6. Electronic Power Assisted Steering (EPAS) Control 318 

 The X2000 uses EPAS technology by providing target path data to the vehicle’s 319 
power steering control module (PSCM). The X2000 performs inference on its video feed 320 
to determine the trajectory the car should follow to stay centered in its lane, turn, or make 321 
a lane change. The X2000 creates a lateral control CAN-FD message that can be used to 322 
instruct the vehicle’s PSCM of how to control the EPAS system. The fields for steering 323 
adjustments in the CAN-FD message are the following: 324 

• The vehicle’s target offset from the center of the lane in meters; 325 
• the offset angle from the vehicle’s path in radians; 326 
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• the curvature the vehicle should follow in inverse meters (1/m); 327 
• the rate of change of that curvature in inverse meters squared (1/m2); 328 
• enabling or disabling lateral control; 329 
• how closely the vehicle should follow the given curvature; 330 
• if the driver’s hands are on the wheel for safety. 331 

2.7. GMSL2 Camera 332 

 The X2000 uses a GMSL2 camera manufactured by StereoLabs called the ZED X One. 333 
Their ZED Link Duo GMSL2 deserializer receives the video feed from the camera [23]. 334 
The ZED X One has a resolution of up to 1920 by 1200 pixels [23]. Its stock lens has a 91° 335 
FOV diagonally, 80° horizontally, and 52° vertically. It records video at up to 60 FPS, 336 
which the X2000 takes advantage of by only sampling one of every three frames to guar- 337 
antee the 20 FPS framerate expected by the reference computer vision model. The ZED X 338 
One has an integrated accelerometer that can be used for orientation calibration [23]. 339 
GMSL2 allows for fast, lossless video transfer, so the X2000’s computer can receive high 340 
image quality in real-time [24]. The camera mounts in the vehicle’s stock forward camera 341 
location to make integration simple. The images from the camera are cropped and pro- 342 
jected to an additional narrow area of focus so the computer vision model can perform 343 
coarse and fine inference on the scene with a wide and narrow view, as required by the 344 
AI model provided by Openpilot 0.10.1. 345 

2.8. Safety 346 

 Several safety features are implemented in the X2000’s software. It maintains the 347 
safety features and guidelines included in the original Openpilot system [25]. The driver 348 
is required to be attentive and prepared to take control of the vehicle at all times. The 349 
system can be disengaged by pressing the vehicle’s Cruise Control button. Autonomous 350 
steering can be overridden by applying torque to the steering wheel. Velocity control can 351 
be disabled by manually engaging either the throttle or brake. The GUI provides audio 352 
and visual feedback to indicate that the driver needs to take manual control when the 353 
video, radar, or CAN-FD data is no longer being received after 250 ms. The vehicle’s CAN- 354 
FD protocol and the X2000’s control algorithms enforce redundant steering torque and 355 
acceleration limits. 356 

3. Results 357 

3.1. Introduction 358 

The results presented and discussed in the following sections were gathered using 359 
data logged by the X2000 during various driving scenarios. Characteristics of the route 360 
include: 361 

• Length: 20 Minutes; 362 
• Environment: Daytime, United States Interstate Highway; 363 
• Traffic Density: Medium/Low; 364 
• Weather: Partly Cloudy; 365 
• Number of Routes: 1. 366 

A script is used to send the CAN-FD and video data to the X2000’s control and inference 367 
processes with the same format and timings as the original recording. Sections 3.2 and 3.3 368 
demonstrate the efficiency of the system for inference and control. Processing speed is 369 
critical for real-time systems so the X2000 must be fast and consistent for the safety of the 370 
user. Section 3.4 and 3.5 demonstrate the computational capacity of the X2000 during 371 
ADAS testing. Reaching maximum capabilities of the hardware can lead to skipped 372 
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frames, degrading performance, and a lack of headroom for software extensibility. It is 373 
important to understand where the device’s limitations are and what can be done to cor- 374 
rect them. While the reference inference model from Openpilot is already proven to make 375 
accurate predictions [7], a future goal for evaluating the performance of the X2000 is to 376 
compare the vehicle’s state received over CAN-FD with the control output decisions. Do- 377 
ing this validates the system outputs are in line with recorded driving decisions made by 378 
a human driver. 379 

3.2. Control End-to-End Latency 380 

The control process’s performance is evaluated by the end-to-end latency. The sam- 381 
ple time starts when an input is received. It is defined by the time it takes to parse the 382 
input, execute control calculations, generate a control output, and transmit it. Research 383 
done by Saez-Perez et al. on the end-to-end latency of the original Openpilot system found 384 
that the vehicle control process should have a latency of 10 ms between inputs with a 385 
standard deviation of about 2 ms [26]. Figure 6 shows the CAN-FD controls are processed 386 
with an average processing time of 10.11 ms per cycle. 89.77% of cycles meet the target 387 
processing timing of 10 ms. 9.56% of cycles take an additional 1 ms. 0.67% take an addi- 388 
tional 2 ms or more. The maximum latency is 43 ms and the minimum is 2 ms. The stand- 389 
ard deviation is taken as a rolling average standard deviation over the last 10 data points. 390 
Figure 7 shows that it remains primarily below 1 ms with occasional spikes. The overall 391 
average standard deviation is 0.61 ms. The X2000’s control process design performs well 392 
to meet the required speeds for real-time control, with 99.33% of cycles meeting the timing 393 
requirement, and the 42ms an outlier on initial start-up. 394 

 395 

Figure 6. Distribution of the end-to-end latency for each control cycle. 396 

 397 
Figure 7. Overall average standard deviation and rolling standard deviation of the control process’s 398 
end-to-end latency. 399 
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While the latency is highly robust, sporadic spikes were observed. The spikes suggest 400 
issues with causes such as resource contention, garbage collection, or the thermal throt- 401 
tling issues discussed in Section 3.5. Design methods such as shared memory help to limit 402 
the use of implicitly shared resources that can lead to resource contention [27]. Taking that 403 
methodology further by assigning specific CPU cores to the X2000’s process could further 404 
improve stability [27]. Garbage collection can also be managed more explicitly to avoid 405 
spikes. Active cooling is planned for a future design of the X2000 to address thermal per- 406 
formance, which is expected to improve stability by preventing thermal throttling. 407 

3.3. Inference End-to-End Latency 408 

The inference process’s end-to-end latency is determined by the time taken to receive 409 
a video frame, perform inference, and write the output of the model to shared memory. 410 
Saez-Perez et al. found the end-to-end latency for inference is expected to be 100 ms, with 411 
a standard deviation of about 7 ms [26]. Figure 8 shows the video frames are processed 412 
with an average of 57.85 ms per frame. The highest processing time is 102 ms and the 413 
lowest is 44 ms. The distribution of processing times follows a log-normal distribution 414 
[28]. This distribution is caused by several variables such as memory access, GPU and 415 
CPU workloads, and caching contributing multiplicatively to the overall inference time 416 
[28]. Figure 9 shows the rolling standard deviation over the last 10 video frames. It ranges 417 
mostly from 2 ms to 8 ms with occasional spikes. The overall average standard deviation 418 
is 5.72 ms. Compared to the findings of Saez-Perez et al., the X2000’s inference design 419 
performs very well to achieve real-time inference, averaging a latency time 42.15% faster 420 
than required [26]. 421 

 422 

Figure 8. Distribution of the end-to-end latency for each frame used for inference. 423 

 424 

Figure 9. Overall average standard deviation and rolling standard deviation of the inference pro- 425 
cess’s end-to-end latency. 426 
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Only one frame exceeded the required end-to-end latency of 100 ms at 102 ms, but 427 
spikes in the rolling standard deviation suggest some system instability that could be im- 428 
proved upon. The contributing factors to the log-normal distribution of the end-to-end 429 
latency mean it would not be expected that inference is as stable as control. However, the 430 
same methods discussed in Section 3.2 could be applied to the inference process as well. 431 
Explicitly defining how system resources are used wherever possible will minimize the 432 
likelihood that they conflict and cause latency spikes. 433 

3.4. Hardware Utilization and Power Consumption 434 

Figures 10 through 13 show the behavior of the X2000’s hardware over time as it 435 
performs ADAS testing. The CPU, GPU, and RAM utilization were measured as a per- 436 
centage of their total bandwidth utilized over time. The CPU, GPU, and overall power 437 
consumption were measured in Watts. The X2000 ran its main processes for ADAS testing 438 
while the data was recorded. 439 

 440 

Figure 10. Jetson AGX Orin CPU utilization over time while performing ADAS testing. 441 

 442 

Figure 11. Jetson AGX Orin GPU utilization over time while performing ADAS testing. 443 

 444 

Figure 12. Jetson AGX Orin RAM utilization over time while performing ADAS testing. 445 
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 446 

Figure 13. Jetson AGX Orin power consumption over time by the CPU, GPU, and overall device 447 
during ADAS testing. 448 

CPU, GPU, and RAM utilization averaged 66.6%, 57.4%, and 32.4% respectively. The CPU 449 
utilization is higher since it is responsible for running every ADAS process while the GPU is only 450 
performing inference. Since the GPU is only under load for brief periods in the utilization measure- 451 
ment window when a new video frame is received, it causes high and low spikes as well as the 452 
somewhat low average utilization [29]. RAM utilization is relatively consistent since most of the 453 
memory it requires is allocated when the main processes are initialized at startup. The specified 454 
power draw of the Jetson AGX Orin is 15W to 40W, so the average of 21.76W total is good since it is 455 
at the low end of the specified range [21].  456 

3.5. Thermal Performance  457 

Despite the low power consumption, the thermal performance is an area in need of improve- 458 
ment. The chipset temperatures rise steadily at 0.43°C per minute for both the CPU and GPU to 459 
maximums of 100°C and 93°C respectively. High temperatures lead to thermal throttling, a hard- 460 
ware safety measure that reduces clock speeds of the CPU or GPU thereby reducing throughput 461 
[30]. The temperature curves in Figure 14 flatten when the Jetson AGX Orin begins thermal throt- 462 
tling. 463 

 464 

Figure 14. Jetson AGX Orin CPU and GPU chipset temperature over time. 465 

 Thermal throttling can negatively affect computational throughput due to a feature called dy- 466 
namic voltage and frequency scaling (DVFS) [30,31]. DVFS is defined in Equation (1), where 467 
Pdynamic is the power consumption of the chip, α is the activity factor as a percentage of transistors 468 
switching, CL is the chipset’s load capacitance, Vdd is the supply voltage, and f is the clock fre- 469 
quency. The AGX Orin adjusts its CPU clock frequency, GPU clock frequency, and supply voltages 470 
to regulate and reduce its power consumption, thereby protecting it from overheating. Reduced 471 
throughput introduced by DVFS presents a risk of model performance degradation such as missed 472 
frames, late outputs, or even complete system shutdown [31]. 473 
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Pdynamic = α × CL × Vdd2 × f      (1) 474 

Praveen et al. found that passive cooling using heat sinks made of copper or aluminum are 475 
effective to improve thermal performance of hardware for ADAS applications [31]. They recom- 476 
mend using thermal pastes or pads to facilitate heat transfer from the chipset to the heat sink. De- 477 
signing the heatsink to maximize its surface area and contact with the chipset allows the surround- 478 
ing air to extract heat much more effectively [31]. 479 
 This research suggests active cooling is also necessary. Active cooling extracts heat from the 480 
system using electronics with moving parts such as fans or a water pump [31]. If passive cooling is 481 
not effective enough to prevent thermal throttling, adding fans to remove the hot air from the 482 
X2000’s heat sinks and enclosure can further improve its thermal performance [31]. There are plans 483 
for the next iteration of the X2000’s design to include active cooling via fans. In cases of extreme 484 
thermal loads, a water pump, a heat sink with liquid routing channels, and a radiator can be used 485 
to very efficiently extract heat from the system [31]. 486 

4. Discussion 487 

 This article provides a thorough evaluation of the X2000. Overall, it proves to be a 488 
capable platform for developers to leverage for rapid ADAS development. It provides an 489 
accessible, extensible, ready-to-use platform for ADAS development that simplifies the 490 
technical barriers to entry for new developers and researchers. Test results show that it 491 
can process CAN-FD inputs, build a vehicle state model, and send CAN-FD outputs re- 492 
quired for ADAS within 1 ms of the target time at a rate of 99.33%. It can also perform 493 
inference on live video to determine vehicle steering and velocity plans at an average of 494 
57.85 ms per frame, 42.15% below the requirement of 100 ms. The Jetson AGX Orin hard- 495 
ware performs well with sufficient computational capacity for additional features and ca- 496 
pabilities in the future, though it requires active cooling when running for long periods. 497 

 The primary piece of future work for the X2000 is the implementation of real-time 498 
vehicle control by validating the safety and integrity of the CAN-FD communication pipe- 499 
line on a real vehicle while driving in a wide variety a scenarios. It is essential that the 500 
driving decisions made by the X2000 can be validated in real driving scenarios for safety, 501 
accuracy, and comfort. As part of the controls validation, a method of comparing recorded 502 
vehicle data with system output predictions is planned. This has the potential to validate 503 
computer vision model accuracy and make overall ADAS development easier by enabling 504 
benchtop model testing. Thermal solutions are planned to ensure continuous operation at 505 
high load does not trigger thermal throttling. To further improve safety, sensor faults can 506 
be detected with methods such as attention mechanisms to improve system safety and 507 
reliability [32]. Finally, it is planned to establish structured methods of migrating the hard- 508 
ware and software between test vehicles and hardware platforms. 509 
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Abbreviations 523 

The following abbreviations are used in this manuscript: 524 

ADAS Advanced Driver Assistance System 
EPAS Electronic Power Assisted Steering 
GMSL2 Second-Generation Gigabit Multimedia Serial Link 
CAN-FD Controller Area Network Flexible Data-Rate 
DBC CAN Database 
MPC Model Predictive Control 
BGR Blue-Green-Red 
RGBA Red-Green-Blue-Alpha 
PSCM Power Steering Control Module 
DVFS Dynamic Voltage and Frequency Scaling 
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